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Stochastic resonance in maps and coupled map lattices
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We demonstrate the phenomenon of stochastic resonance~SR! for discrete-time dynamical systems. We
investigate various systems that are not necessarily bistable, but do have two well-defined states, switching
between which is aided by external noise which can be additive or multiplicative. Thus we find it to be a fairly
generic phenomenon. In these systems, we investigate kinetic aspects like hysteresis which reflect the nonlinear
and dissipative nature of the response of the system to the external field. We also explore spatially extended
systems with additive or parametric noise and find that they differ qualitatively.@S1063-651X~97!12608-3#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

A seemingly counterintuitive scenario that a weak sig
can be enhanced by addition of noise was proposed by B
and co-workers@1# in connection with the glaciation cycle o
the Earth. Since then stochastic resonance~SR! has been
employed in explaining various phenomena~see, e.g.,@2,3#!
and has been studied extensively experimentally as we
theoretically@4–6#. The major emphasis of the studies h
been on the original model by Benziet al. @1# in which the
stochastic system in consideration has two stable fixed po
in the absence of noise and driving force, though few ot
models have also received attention@7–10#. The essence o
the phenomenon is that even a weak periodic signal whic
undetectable in the absence of noise can force a bist
system to switch between its two states, periodically, in
presence of an optimal noise. Often one calculates the po
spectrum of the output signal of the system filtered throug
two-level filter. The ratio of output power in the frequency
the signal with the background noise, also called a signa
noise ratio~SNR! is a relevent quantifier here. In fact, no
monotonic behavior of SNR with the noise intensity has
come a ‘‘fingerprint’’ of this phenomenon.

Additive noise has been the focus of most of the stud
The multiplicative noise, which is not equivalent to additi
noise in the presence of a periodic field@11# and thus in
principle can show qualitatively different behavior, has be
studied in the context of a bistable potential@12#. However,
its effect in spatially extended systems, or in systems o
than the bistable potential which has two distinct attract
having a possibility of noise induced switching, has not be
probed. Multiplicative noise occurs in a variety of physic
phenomena@12–14# and is certainly important. Recently a
ternative quantifiers are suggested to study SR. Most not
among them is the residence time distribution funct
~RTDF!. Unlike SNR, areas under successive peaks
RTDF show nonmonotonicity, both as a function of fr
quency or noise intensity@15#. Also of importance are the
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kinetic aspects of the phenomenon which reflect the wa
system responds to the signal. These aspects have
mainly investigated by measuring the phase shift betw
the signal and the response@16,17#. Hysteresis which reflects
phase shift and also the extent of losses in a periodic
driven system is an equally important quantifier@18–20#.
However, studies of the usual hysteresis behavior in the p
ence of noise have hardly been attempted. One notable
ception has been a numerical work by Mahato and She
@18#. However, they define the hysteresis loop in a differe
way than is usually done. Thus, as they state, we can
expect their results to be carried over to the usual case e
qualitatively. Recently there have been few interesting st
ies on SR in spatially extended systems theoreticaly@21–24#,
as well as experimentally@25#. The reasons for the recen
surge of interest in analysis of spatiotemporal systems
not far to seek. These systems are important from the p
of view of potential applications that range from coupl
nonlinear devices and signal processing to neurophysiol
and merit further attention.

We feel that SR is a generic feature of two-state syste
neither state of which needs to be a stable fixed point. A
system with two well-defined and well-separated sta
switching between which can be aided by noise, can poss
show stochastic resonance in the presence of a weak si
We will illustrate this with systems switching between tw
chaotic attractors, a chaotic attractor and a fixed point,
will also present the standard model of two stable fix
points. It is easy and computationally inexpensive to co
struct such cases using discrete-time systems like maps
we will be using maps for demonstration. We have used b
additive and multiplicative noise in our simulations. In ma
physical and chemical systems noise is generated intern
~see, e.g.,@13#! and such systems have been observed
show stochastic resonance. As we have pointed out, the
tiplicative noise in the presence of a periodic force is n
equivalent to additive noise coupled with a periodic sign
Interestingly, in the case of a single map, both show a sim
qualitative behavior as far as SR is concerned, i.e., in b
cases SNR shows nonmonotonic behavior of response
function of noise and has a peak at some value of noise
2518 © 1997 The American Physical Society
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56 2519STOCHASTIC RESONANCE IN MAPS AND COUPLED . . .
We have investigated residence time distribution funct
as a function of frequency and noise intensity in this syste
We discover that the behavior is analogous to the one fo
in an archetypical example of a bistable potential@15#.

In this dissipative and nonlinear system, the respons
the external field is likely to be delayed and nonlinear. T
simplest way to gauge it is to study hysteresis in these
tems which will reflect both losses as well as delay in
response@18#. This will be information additional to the on
given by a simple signal to noise ratio, e.g., SNR does
reflect the phase shift in the response.

Finally we investigate spatially extended systems wh
local dynamics is governed by these maps. Such syste
popularly known as coupled map lattices~CML’s! @26# have
gained considerable attention in recent times due to t
computational simplicity and ability to reproduce qualitati
features in various phenomena. To name a few interes
applications one can point out the modeling of phase ord
ing dynamics@27#, spatiotemporal intemittency@28#, spiral
waves@29#, etc. However, we are not aware of any attemp
observe SR in these systems. Here we see a qualitative
ference between the systems subjected to an additive n
and parametric noise.

In Secs. II and III we will define our models and prese
their analysis. In Sec. IV we discuss the residence time
tribution function and how it is affected by noise intens
and frequency. In Sec. V we will discuss the hysteresis
effect of noise. In Sec. VI we will define the spatially e
tended systems in a way popularly known as a coupled m
lattice and discuss the results in it. Finally in Sec. VII w
conclude and discuss questions that we are interested in

II. THE MODELS

Let us consider the following maps in absence of a
periodic or noisy drive:

f S~x!5S tanh~x!, xP~2`,`!S.0, ~1!

ha~x!5exp~a!xumod 1, xP~21,1!, ~2!

gr~x!5H rxumod 1, xPS 0,
1

2G ,
r ~12x!umod 1, xPS 1

2
,1G ,

gr~x!52hr~2x!xP~21,0!. ~3!

~a! The map f S(x) which has a Hamiltonian symmetr
@ f S(2x)52 f S(x)# and two stable fixed points symmetr
aroundx50 is clearly analogous to the original model of th
bistable potential@1#. In this case also, the basin of attractio
of the positive fixed pointxS* is (0,̀ ) while that of the
negative fixed point that is symmetrically placed at2xS* is
(2`,0). Thus the system has two stable fixed point attr
tors any of which is reached depending on initial conditio
@see Fig. 1~a!# @30#.

~b! The mapha(x) shows chaotic behavior ifa.0 or has
a stable fixed point 0 as an attractor ifa,0. Thus the map
n
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has a chaotic or fixed point attractor depending on the value
of a. @Figure 1~c! shows the maphp(x) andhq(x) for p.0
andq,0.#

~c! The mapgr
(x) also has the same symmetry as map

f S(x). It has a fixed point attractor atx50 for ur u,1. How-
ever forur u.1, it has an interesting behavior. In this range, it
shows two chaotic attractors symmetric around zero sepa
rated by 2a0 @see Fig. 1~b!#. The map is such that for any
initial condition x0P@0,1#, gr

T(x0)P@0,1# for all timesT. In
fact, for 1,r ,2 the attractor on the positive side does not
span an entire unit interval but is in the interval
@a0 ,a1#5@gr

2~1
2!,gr~

1
2!# for xP(0,1), while for xP(21,0),

the values asymptotically span interval@2a1 ,2a0#. ~For
r>2, a050, a151.!

FIG. 1. The mapsf S , ga andhr are shown in as defined in Eqs.
~1!, ~2! and ~3! and are depicted in~a!, ~b!, and~c!, respectively.
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2520 56PRASHANT M. GADE, RENUKA RAI, AND HARJINDER SINGH
III. SR IN MAPS

The above maps have the desired property of having
different attractors between which the system can sw
when aided by noise. We investigate the following system

~a! x~ t11!5 f S„x~ t !…1zcos~2pvt !1h t, ~4!

~a1! x~ t11!5 f S1h t
„x~ t !…1zcos~2pvt !, ~5!

~b! x~ t11!5@ha1h t1zcos~2pvt !„x~ t !2p0…#1p0umod 1,
~6!

~c! x~ t11!5@gr„x~ t !…1zcos~2pvt !1h t#umod 1, ~7!

~c1! x~ t11!5@gr 1h t
„x~ t !…1zcos~2pvt !#umod 1, ~8!

whereh t is a d correlated random number with varianceD.
Except in the case of Eq.~4!, whereh t has a Gaussian dis
tribution, we have a uniform distribution forh t . Due to sym-
metry, the mapsf S(x) and gr(x) have symmetric attractor
on the positive and negative sides. Since we are intereste
interstate switching we neglect the intrastate fluctuations
the cases of Eqs.~4!, ~5!, ~7! and ~8! while analyzing the
output. The output is analyzed in the usual manner, i.e.,
takes the Fourier transform of the time series thus gener
and averages the power over various phases and also i
conditions. The SNR is defined as the ratio of the intensity
a d spike in the power spectrum at the frequencyV52pv
to the height of the smooth fluctuational backgroundQ0(V)
at the same frequencyV then

SNR5 log10

~ total power in the frequencyV!

Q0~V!
. ~9!

Variations in this definition do not change the results qu
tatively. Our computations are at 2332/v grid points and
we have used the Bartlett function for windowing.~For a
discussion of technical aspects, see Ref.@4#.!

~a! This is the simplest system which mimics the we
studied bistable potential model@1# of Benzi and co-workers
Here the system toggles between the positive and the n
tive fixed points of the mapf S , (xS* and2xS* ). The system
is defined over the entire range (2`,`). We apply Gaussian
noise. It is seen that as the noise intensity increases the s
tral strength of the signal also increases, but this happen
the expense of noise, thus increasing the signal to noise r
This happens since, when the signal is at its peak, the l
noise aids the system to flip from the basin of attraction
one fixed point to other. For large noise, the flips can oc
almost all the time, the regularity is reduced and SNR
creases again. This behavior is shown in Fig. 2~a! which
shows SNR as a function of noise intensityD for the system
defined by Eq.~4!.

~a1! In this map we also have the possibility of paramet
noise as in Eq.~5!. The value of noise changes the positi
and the stability of the fixed point. For large enough no
the fixed point can come arbitrarily close to zero, whi
coupled with the periodic signal can cause flips which can
very regular at optimal noise level. Thus SNR shows as s
dard SR behavior as a function ofD @see Fig. 2~b!#.
o
h
s:

in
in

e
ed
tial
f

-

a-

ec-
at
io.
le
f
r
-

e

e
n-

~b! Now we explore the possibility of competition be
tween a fixed point attractor and a chaotic attractor switch
between which is aided by noise.@We have added a sma
constantp0 in Eq. ~6! unlike Eq.~2! for numerical reasons
The position of the fixed point now changes top0. For
p050, the trajectory that comes close to zero within nume
cal precision will stay there. This change does alter the
scription of the map qualitatively.# At the minimum value of
the drive, it is likely thatat5a1h t1z cos(2pvt),0 and the
system will be attracted to the fixed point. While small noi
will aid this repetitive attraction towards the fixed point, ve
large noise is likely to reduce it. As a result, we see a n
monotonic response of SNR to noise intensity. In so
sense, this system mimics excitable dynamics, where SR
been observed@10# ~though the excited state in this case
not a chaotic state!. Figure 2~c! shows SNR as a function o
noise intensityD for this system.

This system is like a random walk when viewed on
logarithmic scale. Neglecting the modulo factor, the varia
value at time n11 goes as ln(xn11)5an1an211•••1a0
1ln(x0) whereat5a1h t1zcos(2pvt). Thus it is like a ran-
dom walk with initial position ln(x0) and dispacementai at
i th time step. The value ofxi is bounded from above by unity
due to the modulo condition andxi does not tend to zero
asymptotically sincea.0. Due toa.0, this is a case of a
biased one-dimensional~1D! random walk bounded from
above. Thus this system is comparable with the stocha
resonance seen in random walk@31#. Figure 3 shows a sche
matic diagram for the above description.

~c! This is another interesting but unexplored possibili
Here we have two chaotic attractors switching betwe
which is aided by noise and a periodic signal. We would li
to point out that apart from the nature of the attractors, t
system is very similar to the system defined by Eq.~4! as far
as the dynamics of interstate switching is concerned. Le
consider the system defined in Eq.~7!. As noted above, the
two attractors are well separated in the absence of noise
periodic signal and the system stays in either of them
pending on initial conditions. However, in the presence
noise, the system can ‘‘leak’’ out of the attractor. This ‘‘lea
ing,’’ i.e., switching from positive attractor to negative an
vice versa is likely to occur at the most opportune times, i
at the minimum and the maximum of the signal. Thus o
may expect stochastic resonance here which is indeed
case@see Fig. 2~d!#.

~c1! Here one could have a parametric noise as an a
native to additive noise. The parametric noise can change
value ofa0 which controls the distance between two attra
tors thus aiding the switching. Figure 2~e! shows SNR as a
function of noise intensityD in these systems. One can see
clear nonmonotonicity in response.

IV. RESIDENCE TIME DISTRIBUTION FUNCTION

Of late, quantifiers, other than SNR have been propo
in the context of SR. To name a few, the signal amplitu
and residence time distribution function~RTDF! have been
discussed in the literature. In our opinion, SNR is a be
quantifier than the signal amplitude itself from the sign
detection point of view. However, the residence time dis
bution function is an important quantity from the followin
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FIG. 2. The SNR as a function ofD for systems defined by Eqs.~4!–~8! are shown in~a!–~e!, respectively.v51/8, S52, z50.5 for ~a!
and ~b!; v51/8, r 51.4, z50.12 for ~d! and ~e!; and v51/32, p050.01, a50.1, z50.1 for ~c!. Noise is Gaussian for the case of th
unbounded map defined by Eq.~4! while it is uniform on a unit interval in other cases.
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point of view. The intuitive argument given for SR is th
when the Kramer’s rate, which is a time scale induced by
stochastic process, matches with the periodicity of the fo
ing term, the output signal shoots up. Thus changing ei
time scale, i.e., Kramer’s rate which can be altered by no
or the periodicity of the forcing term, one should observe
SR. However, though SNR shows nonmonotonicity as
function of noise intensity, it is a steadily decreasing fun
tion of the forcing frequency unlike the ordinary resonan
where resonance can be achieved by changing either
scale@4#. So the question is wheher SNR is the right quan
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to look for. One more problem pointed out is that the ma
mum of SNR does not occur when the Kramer’s rate exa
matches the forcing frequency. In fact, like several oth
@5,32#, Fox @33# pointed out that the peak in SNR has not
ing to do with the matching of Kramer’s rate to the sign
frequency and suggested the term ‘‘noise induced signa
noise ratio enhancement~SNRE!’’ which, though a clumsier
term than SR, is probably a more correct description of
phenomenon in his opinion.

In this context RTDF has been introduced as an alter
tive quantifier. If t i denotes the times at which successi
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2522 56PRASHANT M. GADE, RENUKA RAI, AND HARJINDER SINGH
switchings occur, normalized distributionN(t) of the quan-
tities T( i )5t i2t i 21 is called RTDF. The observation is tha

the RTDF shows peaks centered atTn5(n2 1
2 )T0, T051/v

on an exponentially decaying background. The quan
n51,2, . . . is apositive integer and the peaks at succes
Ti ’s are also exponentially decaying.@This behavior is ob-
served by applying this definition to a system defined by
~4! also. See Fig. 4 which shows RTDF for three differe
frequencies.# This quantifier is attractive since it has be
shown by Gammatoniet al. that if one computes the are
under succesive peaks it shows a nonmonotonicity as a f
tion of both noise intensity as well as forcing frequency@15#.
Thus the intuitive picture of SR is recovered. In analogy w
@15#, we defined areas under different peaksPn as

Pn5 (
Tn2T0/4

Tn1T0/4

N~T!dt. ~10!

Except for very large frequencies, i.e., for very small perio
icities (T0<4), this definition works well to check the peak
The behavior of areas under different peaks for the sys
defined by Eq.~4! is plotted in Fig. 5~a! as a function of
frequencyv. It shows a clear nonmonotonicity as a functio

FIG. 3. This figure shows the schematic diagram of how
evolution under Eq.~6! resembles a 1D random walk on a logarit
mic scale with a boundary condition at ln(x)50 coming due to the
modulo condition on the right-hand side while the evolution is u
bounded on the left-hand side.

FIG. 4. ~a! Hysteresis curve forD50.2, D51, D51.4, and
D55.2 for the map defined by Eq.~4! for S52, z50.5, and
T51/v532. One can clearly see that for lowD maxima and
minima of magnetization are not in tune with the drive.~b! The area
of hysteresis loop as a function of noise intensityD in this case.
One can clearly see a decrease at larger noise values. Resi
time distribution functionn~RTDF! N(t) as a functiion of scaled
time t/T0 is shown in the figure for various frequencies, i.e., vario
values ofT0. Parameters areS52 andz50.5.
y
e

.
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of freqency. This is also clear from Fig. 4 where RTDF
shown for different frequencies. The height of the peaks fi
grows and then decays. The dependence of the area u
different peaks as a function of noise intensity at a giv
frequency for the same system is shown in Fig. 5~b! which is
also clearly nonmonotonic. It is interesting that the the b
havior of this system even in quantifiers other than SNR
very analogous to the one seen in continuous time syste

V. HYSTERESIS

Now we discuss the kinetic aspects of this phenomen
Hysteresis is a kinetic phenomenon which is the signature
the response of the system to an external field sweep
general, due to the losses, the system is not able to follow
external signal exactly. There is an accumulated strain a
which it responds to the signal. The quantity that refle
these losses is the area of the hysteresis loop. The mos
miliar example is the behavior of magnetizationM as a func-
tion of alternating external magnetic fieldH. We have a two-
state system in our examples and we are analyzing the si
filtered through two-state filter. This makes it easy to defi
an analogue of magnetization. We define

e

-

nce

s

FIG. 5. ~a! The area under the first, second, and third peaks
RTDF @P1, P2, and P3, as defined in Eq.~10!# is shown as a
function of driving frequency at a fixed value of noise intens
D50.6. ~b! The area under the first, second, and third peaks
RTDF (P1, P2, andP3) is shown as a function of noise intensity
a fixed driving frequency (v51/32). ~Parameters areS52 and
z50.5.!
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56 2523STOCHASTIC RESONANCE IN MAPS AND COUPLED . . .
m~ t !5
1

N(
j 51

N

sgn@x~ jT1t11!#,

where T is the period of the applied periodic force an
t51,2, . . . ,T/2. It is clear thatm(t) is just the difference
between the number of times the value of the variablex is
greater than zero and that it is less than zero, at timest11
moduloT where 1<t<T/2. We normalizem(t) properly so
that r (t)5m(t)/M is confined between 1 and21. @M is the
maximum value thatm(t) takes. By symmetry, we would
expect it to be the same on the positive and negative sid#
This gives one of the branches of the hysteresis loop.
other branch can be constructed by symmetry or compu
by

m~T/22t !5
1

N(
j 51

N

sgn@x~ jT1T/21t11!#

for t51,2, . . . ,T/2 and r (t)5m(t)/M . Here one can have
two extreme cases. If the response is exactly in tune with
field, the magnetization will be zero at a zero value of t
periodic force~no remnant magnetization! and the hysteresis
area will be zero. On the contrary, if the response is so
that only at the end of the half-cycle, the flips start occuri
the loop will have maximum area. Thus the more delayed
response is, the higher is the area of the hysteresis loop
hence is the popular notion of hysteresis area giving ind
tion of losses in the system. One woulda priori think that as
the noise intensityD increases, which is an equivalent
increasing temperature, the hopping between the diffe
states will be faciliated and thus the area of the loop w
decrease at larger noise values. This is exactly what our
servation is. We have plotted the area of hysteresis loop
the system defined by Eq.~4! in Fig. 6~b!. Here, we see a
clear decrease in hysteresis loop area with increase in n
intensity. As noise increases, the losses are reduced sinc
system will not stay in the metastable state for long. A s
den fluctuation will force it to respond to the signal and the
will be little memory or remnant magnetization in the sy
tem. Apart from the area of the hysteresis loop, the shap
the hysteresis is also an interesting object to investig
Though for a noise higher than some critical value,
maxima and minima in magnetization start occurring at
maxima and minima of the field, for smaller noise they occ
at different times.@See Fig. 6~a! where we have plotted th
hysteresis loop for four different values of noise intensit#
We can see that the response is delayed from the field
finite phase shift. This phase shift reduces with increas
noise @34#. The results indicate that in the limit of sma
noise the phase shift is of the order of a quarter of the t
period,2p/2 which is expected@16# for a two-state analysis
that does not take in account intrawell fluctuations.

VI. SR IN COUPLED MAP LATTICES

Let us discuss cooperative phenomena possible in the
tially extended versions of this system. The spatially d
cretized periodically forced time dependent Ginzbu
Landau equation@23#, as well as a one-dimensional array
coupled bistable oscillators@21#, have been studied before
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The major result in the work by Lindner and co-workers@21#
has been that the largest value of SNR is higher for a gi
oscillator of the coupled system as compared to the
coupled one. However, the maximum of SNR does not oc
at the same value of noise intensity. Not only is the b
value of SNR higher for the coupled case, the value of S
at a given value of noise intesityD is better for the coupled
system as compared to the uncoupled one. A simple in
pretation that can be offered for the above observation is
even when an oscillator misses the interstate switching,
nearby oscillators may not, thus forcing the individual osc
lator to switch. This cooperative behavior should induce
hanced regularity in the switching of the oscillators and
crease SNR for a given oscillator. The simple interpretat
which can be true for any interstate switching mechani
should also work for the systems we are studying.

We define the following spatially extended system. W
will follow an evolution scheme popularly known as
coupled map lattice. Let us consider a linear array of len
N. At each lattice pointi ( i 51, . . . ,N) we attach a variable
xi(t) at time t. The time evolution ofxi(t) is described by

FIG. 6. ~a! Hysteresis curve forD50.2, D51, D51.4, and
D55.2 for the map defined by Eq.~4! for S52, z50.5, and
T51/v532. One can clearly see that for lowD maxima and
minima of magnetization are not in tune with the drive.~b! Area of
hysteresis loop as a function of noise intensityD in this case. One
can clearly see a decrease at larger noise values.
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FIG. 7. Best value of SNR as a function of couplinge for maps defined by Eqs.~4!, ~5!, ~7!, and~8! are shown in~a!, ~b!, ~c!, and~d!.
It is clear that while for additive noise the best SNR is enhanced, it is not so for parametric noise.
w
SR

a

re
of
-

e
e
a

ea
im
p

se
the

han

uch
rge

se

is
re
led
e

in-
ed

xt,
ur
alue
he
ual

ed
tem
xi~ t11!5~12e!F„xi~ t !…1
e

2
@F„xi 21~ t !…1F„xi 11~ t !…#

~11!

for 2< i<N21 and

x1~ t11!5~12e!F„x1~ t !…1eF„x2~ t !…,

xN~ t11!5~12e!F„xN~ t !…1eF„xN21~ t !…, ~12!

where F denotes some time evolving map. Of course,
will be interested, in particular, in single maps that show
@e.g., Eq.~4!#.

We have used the maps defined by Eqs.~4!, ~5!, ~7! and
~8! as a functionF in the above equation and have made
detailed study of SNR at various values of couplinge and
noise intensityD for N58. Following Lindneret al. @21# we
have looked at the response of the middle oscillator. Figu
7~a! and 7~b! show the best value of SNR as a function
coupling for maps~4! and ~5!, i.e., the tanh map with addi
tive and parametric noise while Figs. 7~c! and 7~d! show the
same for maps defined by Eq.~7! and Eq.~8!, i.e., a chaotic
map with additive and multiplicative noise, respectively. W
have the following observations.~a! In all these cases, th
SNR of the middle oscillator as a function of noise for
given value of coupling is nonmonotonic and shows a p
at some optimal value as in the single map case. The opt
value of noise need not be the same as one for an uncou
e

s

k
al
led

case.~b! If the single system is perturbed with additive noi
the coupling between such systems always enhances
SNR, i.e., the best SNR for the coupled system is better t
the one for a single oscillator case.~c! If the single system is
perturbed by parametric noise, the coupling between s
systems does not enhance SNR much. In fact for a la
value of coupling, there is a clear decrease in SNR.

While observations~a! and~b! are in tune with the studies
by Lindner et al. @21# in coupled bistable systems, the ca
with parametric noise has not been studied before.

We feel that the reason for this qualitative difference
following. When two systems with different parameters a
coupled, i.e., a system with a high Kramer’s rate is coup
to one with a low Kramer’s rate, the Kramer’s rate for th
coupled system is like that of the slower system@35#. For
higher coupling, this effect is more pronounced. Thus,
stead of an induced switching, one could have a slow
down switching in the presence of coupling. In this conte
we would like to point out a rather curious outcome of o
numerical investigation that the best SNR has the least v
arounde52/3 in the case of parametric noise. This is t
value at which all the maps in the neighborhood have eq
weight in Eq.~11! (12e5e/251/3).

VII. DISCUSSION

Due to the computational simplicity of the system defin
above, and its ability to produce key features, the sys
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defined above holds promise for carrying out work in vario
directions with relative ease in the future. Here we wou
like to point out that using a coupled map like formulatio
Oono and Puri have been able to get aquantitativeagree-
ment in the modeling phase ordering dynamics of Ising-ty
systems@27#. Miller and Huse have also found that chao
coupled maps with Hamiltonian symmetry show a pha
transition with static and dynamic critical exponents cons
tent with the Ising class@36#. On the other hand, the Isin
system has been reported to show SR in 1D and 2D@37,38#.
As we have pointed out, recently there have been studie
coupled bistable oscillators in 1D which show SR@21#. Al-
though one does not expect all the detailed behavior in
model to carry over to the other, all these things do po
towards a broader universality between coupled bistable
cillators, coupled maps, and Ising systems. The invest
tions on these lines should be useful in understanding S
spatially extended systems which are relatively unexplo
but clearly important from various points of view. Given th
wide variety of physical situations that the Ising model
able to simulate, this similarity should not come as a s
prise. In fact, the similarity between coupled bistable os
sti
u

tt

e
ys

i
an
d
tor

ev
s

,

e

e
-

on

e
t
s-
a-
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lators and Ising-type systems has been pointed out be
@39#. While studies of the Ising system itself will be useful
analytic investigations, investigations in the coupled-ma
type systems will be computationally more efficient. Stud
in globally coupled maps@24# and detection of noise induce
transitions in maps@40# could be carried out in these sys
tems. The behavior of SNR as a function of couplinge and
number of mapsN could be studied further and these inve
tigations are in progress. One could also investigate SR
two-dimensional coupled map lattice since higher dime
sional spatially extended systems are not investigated.
more important question that needs to be addressed is
effect of multiplicative noise and disorder in SR in spatia
extended systems.
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