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Stochastic resonance in maps and coupled map lattices

Prashant M. Gade
Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Banglore 560064, India

Renuka Rai and Harjinder Singh
Department of Chemistry, Panjab University, Chandigarh 160014, India
(Received 6 January 1997

We demonstrate the phenomenon of stochastic reson@Refor discrete-time dynamical systems. We
investigate various systems that are not necessarily bistable, but do have two well-defined states, switching
between which is aided by external noise which can be additive or multiplicative. Thus we find it to be a fairly
generic phenomenon. In these systems, we investigate kinetic aspects like hysteresis which reflect the nonlinear
and dissipative nature of the response of the system to the external field. We also explore spatially extended
systems with additive or parametric noise and find that they differ qualitati/®h063-651X%97)12608-3

PACS numbds): 05.45+b

[. INTRODUCTION kinetic aspects of the phenomenon which reflect the way a
system responds to the signal. These aspects have been
A seemingly counterintuitive scenario that a weak signalmainly investigated by measuring the phase shift between
can be enhanced by addition of noise was proposed by Benttie signal and the responfks,17]. Hysteresis which reflects
and co-worker$l] in connection with the glaciation cycle of phase shift and also the extent of losses in a periodically
the Earth. Since then stochastic resonaf8B) has been driven system is an equally important quantifld&8—20.
employed in explaining various phenome(sae, e.g.[2,3]) However, studies of the usual hysteresis behavior in the pres-
and has been studied extensively experimentally as well asnce of noise have hardly been attempted. One notable ex-
theoretically[4—6]. The major emphasis of the studies hasception has been a numerical work by Mahato and Shenoy
been on the original model by Benet al. [1] in which the  [18]. However, they define the hysteresis loop in a different
stochastic system in consideration has two stable fixed pointway than is usually done. Thus, as they state, we cannot
in the absence of noise and driving force, though few otheexpect their results to be carried over to the usual case even
models have also received attentigh-10]. The essence of qualitatively. Recently there have been few interesting stud-
the phenomenon is that even a weak periodic signal which igs on SR in spatially extended systems theoretigily-24,
undetectable in the absence of noise can force a bistabkes well as experimentallj25]. The reasons for the recent
system to switch between its two states, periodically, in thesurge of interest in analysis of spatiotemporal systems are
presence of an optimal noise. Often one calculates the poweiot far to seek. These systems are important from the point
spectrum of the output signal of the system filtered through @f view of potential applications that range from coupled
two-level filter. The ratio of output power in the frequency of nonlinear devices and signal processing to neurophysiology
the signal with the background noise, also called a signal tand merit further attention.
noise ratio(SNR) is a relevent quantifier here. In fact, non-  We feel that SR is a generic feature of two-state systems,
monotonic behavior of SNR with the noise intensity has beneither state of which needs to be a stable fixed point. Any
come a “fingerprint” of this phenomenon. system with two well-defined and well-separated states
Additive noise has been the focus of most of the studiesswitching between which can be aided by noise, can possibly
The multiplicative noise, which is not equivalent to additive show stochastic resonance in the presence of a weak signal.
noise in the presence of a periodic fidltll] and thus in ~ We will illustrate this with systems switching between two
principle can show qualitatively different behavior, has beerchaotic attractors, a chaotic attractor and a fixed point, and
studied in the context of a bistable potenfia?]. However,  will also present the standard model of two stable fixed
its effect in spatially extended systems, or in systems othepoints. It is easy and computationally inexpensive to con-
than the bistable potential which has two distinct attractorstruct such cases using discrete-time systems like maps and
having a possibility of noise induced switching, has not beemwe will be using maps for demonstration. We have used both
probed. Multiplicative noise occurs in a variety of physical additive and multiplicative noise in our simulations. In many
phenomendgl12-14 and is certainly important. Recently al- physical and chemical systems noise is generated internally
ternative quantifiers are suggested to study SR. Most notablgee, e.g.[13]) and such systems have been observed to
among them is the residence time distribution functionshow stochastic resonance. As we have pointed out, the mul-
(RTDF). Unlike SNR, areas under successive peaks ofiplicative noise in the presence of a periodic force is not
RTDF show nonmonotonicity, both as a function of fre- equivalent to additive noise coupled with a periodic signal.
guency or noise intensit15]. Also of importance are the Interestingly, in the case of a single map, both show a similar
qualitative behavior as far as SR is concerned, i.e., in both
cases SNR shows nonmonotonic behavior of response as a
*Electronic address: prasha@jnc.iisc.ernet.in function of noise and has a peak at some value of noise.
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We have investigated residence time distribution functior
as a function of frequency and noise intensity in this system
We discover that the behavior is analogous to the one foun
in an archetypical example of a bistable potertid].

In this dissipative and nonlinear system, the response t
the external field is likely to be delayed and nonlinear. The
simplest way to gauge it is to study hysteresis in these sys
tems which will reflect both losses as well as delay in the
responsg18]. This will be information additional to the one
given by a simple signal to noise ratio, e.g., SNR does no
reflect the phase shift in the response.

Finally we investigate spatially extended systems where
local dynamics is governed by these maps. Such system
popularly known as coupled map lattic€ML’s) [26] have
gained considerable attention in recent times due to thei
computational simplicity and ability to reproduce qualitative
features in various phenomena. To name a few interestin
applications one can point out the modeling of phase order
ing dynamics[27], spatiotemporal intemittench28], spiral
waves[29], etc. However, we are not aware of any attempt ta
observe SR in these systems. Here we see a qualitative d|
ference between the systems subjected to an additive noi:
and parametric noise.

In Secs. Il and Il we will define our models and present
their analysis. In Sec. IV we discuss the residence time dis
tribution function and how it is affected by noise intensity
and frequency. In Sec. V we will discuss the hysteresis an
effect of noise. In Sec. VI we will define the spatially ex-
tended systems in a way popularly known as a coupled ma
lattice and discuss the results in it. Finally in Sec. VII we
conclude and discuss questions that we are interested in.

Il. THE MODELS

Let us consider the following maps in absence of any
periodic or noisy drive:

fo(x)=Stanhx), xe(—©,2)S>0, (1)
ha(X):qua)leodL XE(—l,l), (2)
1
"X|mog1: X€ 0’5'
gr(x): 1
r(l_x)|modla XE(EJ—},
gr(X)=—=h(=x)xe (—=1,0). ()

(@ The mapfg(x) which has a Hamiltonian symmetry
[fs(—x)=—fg(X)] and two stable fixed points symmetric
aroundx=0 is clearly analogous to the original model of the
bistable potentidll]. In this case also, the basin of attraction
of the positive fixed pointx§ is (0) while that of the
negative fixed point that is symmetrically placed-ax¥ is

STOCHASTIC RESONANCE IN MAPS AND COUPLE. . .

2519
’ l " fs(x) I I
2 0 *
z
l - |
0
z
bk B
_x*
) i
3 I 1 ] I a)
-3 -2 -1 0 1 2 3
1 T T
9a(2)
0.5 [ m
—a —ag
0
ag ay z
-0.5 |- ]
L : , b)
-1 -0.5 0 0.5 1
T T T I
h(z)
0.8 |- ]
hp()
0.6 -1
04+ -
02 he(a)
o & 1 ] 1 :
0 0.2 0.4 0.6 0.8 z1

FIG. 1. The mapss, g, andh, are shown in as defined in Egs.
(1), (2) and(3) and are depicted ife), (b), and(c), respectively.

has a chaotic or fixed point attractor depending on the value
of a. [Figure Xc) shows the maj,(x) andhg(x) for p>0
andq<0.]

(c) The mapgﬁx) also has the same symmetry as map
f5(x). It has a fixed point attractor at=0 for |r|<1. How-
ever for|r|>1, it has an interesting behavior. In this range, it
shows two chaotic attractors symmetric around zero sepa-
rated by 2, [see Fig. 1b)]. The map is such that for any
initial conditionxye[0,1], ng(xo) e[0,1] for all timesT. In

(—,0). Thus the system has two stable fixed point attracfact, for 1<r <2 the attractor on the positive side does not
tors any of which is reached depending on initial conditionsspan an entire unit interval but is in the interval

[see Fig. 1a)] [30].
(b) The maph,(x) shows chaotic behavior &0 or has
a stable fixed point O as an attractoraif<0. Thus the map

[a9,21]=[07(3).9:(3)] for xe(0,1), while forxe (—1,0),
the values asymptotically span intervat-a;,—ag]. (For
r=2,a,=0,a,=1)
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. SR IN MAPS (b) Now we explore the possibility of competition be-

tween a fixed point attractor and a chaotic attractor switching

The above maps have the desired property of having tW?)etween which is aided by noise/Ne have added a small

different attractors between which the system can switchC onstantp, in Eq. (6) unlike Eq.(2) for numerical reasons
. . . . . b O . . .
when aided by noise. We investigate the following systems.l_he position of the fixed point now changes fg. For

(@) x(t+1)="fg(x(t))+zcog2mwt)+ 7, (4 po=0, the trajectory that comes close to zero within numeri-
’ cal precision will stay there. This change does alter the de-
(al) x(t+1)=fg,, (X(t))+zcog 27 wt) (5) scription of the map qualitativelyyAt the minimum value of
Tt ’

the drive, it is likely thata,=a+ 7+ z cos(2rot)<0 and the
system will be attracted to the fixed point. While small noise

(B) X(t+1)=[Nas 5+ 205270t (X(D) ~ Po) |+ Polmod 1 will aid this repetitive attraction towards the fixed point, very

(6) large noise is likely to reduce it. As a result, we see a non-
monotonic response of SNR to noise intensity. In some
(©) x(t+1)=[g,(x(t))+zcog27mwt)+ 71|mod1, (7 sense, this system mimics excitable dynamics, where SR has
been observefil0] (though the excited state in this case is
(€)  x(t+1)=[g+,x(t))+2zcoq27wt)]|moa1, (8)  not a chaotic stajeFigure Zc) shows SNR as a function of
noise intensityD for this system.
where 7, is a 6 correlated random number with varianbe This system is like a random walk when viewed on a
Except in the case of Eq4), where », has a Gaussian dis- |ogarithmic scale. Neglecting the modulo factor, the variable
tribution, we have a uniform distribution foy, . Due to sym-  value at timen+1 goes as In.;)=a,+ta,_,+---+a
metry, the mapdg(x) andg,(x) have symmetric attractors +In(x,) wherea,=a-+ 7+ zcos(2rwt). Thus it is like a ran-
on the positive and negative sides. Since we are interested #fom walk with initial position Ing,) and dispacemers; at
interstate switching we neglect the intrastate fluctuations inth time step. The value of is bounded from above by unity
the cases of Eqg4), (5), (7) and (8) while analyzing the due to the modulo condition and does not tend to zero
output. The output is analyzed in the usual manner, i.e., ongsymptotically sincea>0. Due toa>0, this is a case of a
takes the Fourier transform of the time series thus generatéslased one-dimensiondlLlD) random walk bounded from
and averages the power over various phases and also initighove. Thus this system is comparable with the stochastic
conditions. The SNR is defined as the ratio of the intensity ofesonance seen in random wl]. Figure 3 shows a sche-
a 6 spike in the power spectrum at the frequeiey- 2mw  matic diagram for the above description.
to the height of the smooth fluctuational backgro@®{(2) (c) This is another interesting but unexplored possibility.
at the same frequend then Here we have two chaotic attractors switching between
i which is aided by noise and a periodic signal. We would like
(total power in the frequency() 9 © point out that apart from the nature of the attractors, this
Qo) ' system is very similar to the system defined by &j.as far
as the dynamics of interstate switching is concerned. Let us
Variations in this definition do not change the results quali-consider the system defined in E). As noted above, the
tatively. Our computations are at<3%/» grid points and two attractors are well separated in the absence of noise and
we have used the Bartlett function for windowindzor a  periodic signal and the system stays in either of them de-
discussion of technical aspects, see Réf) pending on initial conditions. However, in the presence of

(@) This is the simplest system which mimics the well- noise, the system can “leak” out of the attractor. This “leak-
studied bistable potential moddl] of Benzi and co-workers. ing,” i.e., switching from positive attractor to negative and
Here the system toggles between the positive and the neg¥ice versa is likely to occur at the most opportune times, i.e.,
tive fixed points of the maps, (x& and —x%). The system at the minimum and Fhe maximum of the sygna@l. Thus one
is defined over the entire range ¢2,2). We apply Gaussian May expect stochastic resonance here which is indeed the
noise. It is seen that as the noise intensity increases the spe&@se[see Fig. 2d)]. _ _
tral strength of the signal also increases, but this happens at (c1) Here one could have a parametric noise as an alter-
the expense of noise, thus increasing the signal to noise rati§ative to additive noise. The parametric noise can change the
This happens since, when the signal is at its peak, the litti&alue ofa, which controls the distance between two attrac-
noise aids the system to flip from the basin of attraction oftors thus aiding the switching. Figurée shows SNR as a
one fixed point to other. For large noise, the flips can occufunction of noise intensit in these systems. One can see a
almost all the time, the regularity is reduced and SNR declear nonmonotonicity in response.
creases again. This behavior is shown in Figg) 2vhich
shows SNR as a function of noise intendilyfor the system
defined by Eq(4).

(ad) In this map we also have the possibility of parametric ~ Of late, quantifiers, other than SNR have been proposed
noise as in Eq(5). The value of noise changes the positionin the context of SR. To name a few, the signal amplitude
and the stability of the fixed point. For large enough noiseand residence time distribution functigRTDF) have been
the fixed point can come arbitrarily close to zero, whichdiscussed in the literature. In our opinion, SNR is a better
coupled with the periodic signal can cause flips which can beguantifier than the signal amplitude itself from the signal
very regular at optimal noise level. Thus SNR shows as stardetection point of view. However, the residence time distri-
dard SR behavior as a function bBf [see Fig. 2b)]. bution function is an important quantity from the following

SN R= |Og10

IV. RESIDENCE TIME DISTRIBUTION FUNCTION
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FIG. 2. The SNR as a function @ for systems defined by Eq&)—(8) are shown ina)—(e), respectivelyw=1/8,S=2,z=0.5 for (a)
and (b); 0=1/8,r=1.4,z=0.12 for (d) and (e); and w=1/32, p,=0.01,a=0.1, z=0.1 for (c). Noise is Gaussian for the case of the
unbounded map defined by E@,) while it is uniform on a unit interval in other cases.

point of view. The intuitive argument given for SR is that to look for. One more problem pointed out is that the maxi-
when the Kramer’s rate, which is a time scale induced by thenum of SNR does not occur when the Kramer's rate exactly
stochastic process, matches with the periodicity of the forcmatches the forcing frequency. In fact, like several others
ing term, the output signal shoots up. Thus changing eithel5,32], Fox [33] pointed out that the peak in SNR has noth-
time scale, i.e., Kramer’s rate which can be altered by noiseéng to do with the matching of Kramer’s rate to the signal
or the periodicity of the forcing term, one should observe thefrequency and suggested the term “noise induced signal to
SR. However, though SNR shows nonmonotonicity as anoise ratio enhanceme(BNRE” which, though a clumsier
function of noise intensity, it is a steadily decreasing func-term than SR, is probably a more correct description of the
tion of the forcing frequency unlike the ordinary resonancephenomenon in his opinion.

where resonance can be achieved by changing either time In this context RTDF has been introduced as an alterna-
scale[4]. So the question is wheher SNR is the right quantitytive quantifier. Ift; denotes the times at which successive
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FIG. 3. This figure shows the schematic diagram of how the
evolution under Eq(6) resembles a 1D random walk on a logarith-
mic scale with a boundary condition at ¥)¢0 coming due to the
modulo condition on the right-hand side while the evolution is un-
bounded on the left-hand side. = P -]

0.2

switchings occur, normalized distributia¥(t) of the quan- 0 0.04 0.08 0.12
tities T(i)=t;—t;_, is called RTDF. The observation is that w

the RTDF shows peaks centeredTat=(n—3)T,, To=1/w

on an exponentially decaying background. The quantity
n=1,2,... is apositive integer and the peaks at succesive

T,’s are also exponentially decayingThis behavior is ob-

served by applying this definition to a system defined by Eq.

(4) also. See Fig. 4 which shows RTDF for three different Peak
frequencied. This quantifier is attractive since it has been Areas
shown by Gammatonet al. that if one computes the area

under succesive peaks it shows a nonmonotonicity as a func-

tion of both noise intensity as well as forcing frequent§).

Thus the intuitive picture of SR is recovered. In analogy with

[15], we defined areas under different pedksas

ThtTol4

P.= > N(T)dt (10)
To—Tol4

FIG. 5. (a) The area under the first, second, and third peaks of

Except for very large frequencies, i.e., for very small period-< | OF [P P2, and Py, as defined in Eq(10] is shown as a
. P y . 9 . q o y P function of driving frequency at a fixed value of noise intensity
icities (Tos.4), this definition works well to check the peaks. D=0.6. (b) The area under the first, second, and third peaks of
Th(f: behavior of ar,eas under_ dlﬁgrent peaks for the SySterﬂTDF (P4, P5, andP3) is shown as a function of noise intensity at
defined by Eq.(4) is plotted in Fig. %a) as a function of

> . a fixed driving frequency ¢=1/32). (Parameters ar&=2 and
frequencyw. It shows a clear nonmonotonicity as a function 7=0.5)

0.16 _ . .
' r 5 " 12'8 o of fregency. This is also clear from Fig. 4 where RTDF is
0.14 %0; 39 " shown for different frequencies. The height of the peaks first
012 To=12 — | grows and then decays. The dependence of the area under
' different peaks as a function of noise intensity at a given
0.1 H . frequency for the same system is shown in Figp) Svhich is
N 008 | i also clearly nonmonotonic. It is interesting that the the be-
‘ havior of this system even in quantifiers other than SNR is
0.06 ¢ - very analogous to the one seen in continuous time systems.
0.04 .
0.02 | /1 4 V. HYSTERESIS
o B . I Now we discuss the kinetic aspects of this phenomenon.
0 05 1 15 2 25 3 35 4 45 5 Hysteresis is a kinetic phenomenon which is the signature of

To the response of the system to an external field sweep. In

FIG. 4. (a) Hysteresis curve foD=0.2, D=1, D=1.4, and general, dge to the losses, the system is not able to foI.Iow the
D=5.2 for the map defined by Eq4) for S=2, z=0.5, and extgrnql signal exactly. The_re is an accumu[ated strain after
T=1/w=32. One can clearly see that for lo@ maxima and Which it responds to the signal. The quantity that reflects
minima of magnetization are not in tune with the drigs. The area  theSe losses is the area of the hysteresis loop. The most fa-
of hysteresis loop as a function of noise intendltyin this case. ~ Miliar example is the behavior of magnetizatighas a func-
One can clearly see a decrease at larger noise values. Resideriti@n oOf alternating external magnetic fietl We have a two-
time distribution functionn(RTDF) N(t) as a functiion of scaled State system in our examples and we are analyzing the signal
timet/T, is shown in the figure for various frequencies, i.e., variousfiltered through two-state filter. This makes it easy to define
values ofT,. Parameters ar=2 andz=0.5. an analogue of magnetization. We define
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1 1
m(t)= NE sgix(jT+t+1)],

=1

where T is the period of the applied periodic force and
t=1,2,...T/2. It is clear thatm(t) is just the difference
between the number of times the value of the variable
greater than zero and that it is less than zero, at titieb m(t) 0
moduloT where 1=t<T/2. We normalizen(t) properly so
thatr (t)=m(t)/M is confined between 1 and1.[M is the
maximum value tham(t) takes. By symmetry, we would
expect it to be the same on the positive and negative $ides.
This gives one of the branches of the hysteresis loop. The
other branch can be constructed by symmetry or computed

by 0

N

1
m(T/2—t)=Nj§=:1sgr{x(jT+T/2+t+1)] 37;75_ e

for t=1,2,...T/2 andr(t)=m(t)/M. Here one can have
two extreme cases. If the response is exactly in tune with the T+ ~
field, the magnetization will be zero at a zero value of the
periodic force(no remnant magnetizatipand the hysteresis

area will be zero. On the contrary, if the response is so late  Area
that only at the end of the half-cycle, the flips start occuring,

the loop will have maximum area. Thus the more delayed the
response is, the higher is the area of the hysteresis loop and
hence is the popular notion of hysteresis area giving indica-

tion of losses in the system. One wouwlgriori think that as

the noise intensityD increases, which is an equivalent of R BN
increasing temperature, the hopping between the different 0.1 1 10
states will be faciliated and thus the area of the loop will D

decrease at larger noise values. This is exactly what our ob-

servation is. We have plotted the area of hysteresis loop for FIG. 6. (a) Hysteresis curve foD=0.2, D=1, D=1.4, and

the system defined by E@4) in Fig. 6b). Here, we see a D=5.2 for the map defined by Eq4) for S=2, z=0.5, and
clear decrease in hysteresis loop area with increase in noide=1/o=32. One can clearly see that for lo@ maxima and
intensity. As noise increases, the losses are reduced since thighima of magnetization are not in tune with the dridis. Area of
system will not stay in the metastable state for long. A sugdhysteresis loop as a function of noise in_ten@tyn this case. One
den fluctuation will force it to respond to the signal and thereCan clearly see a decrease at larger noise values.

will be little memory or remnant magnetization in the sys- , , .

tem. Apart from the area of the hysteresis loop, the shape gf"€ major result in the work by Lindner and co-workg2g]
the hysteresis is also an interesting object to investigatd!@S been that the largest value of SNR is higher for a given
Though for a noise higher than some critical value, thePScillator of the coupled system as compared to the un-
maxima and minima in magnetization start occurring at thec0upled one. However, the maximum of SNR does not occur
maxima and minima of the field, for smaller noise they occur@t the same value of noise intensity. Not only is the best
at different times[See Fig. 62 where we have plotted the Value of SNR higher for the coupled case, the value of SNR
hysteresis loop for four different values of noise intengity. & @ given value of noise intesify is better for the coupled

We can see that the response is delayed from the field by $YStem as compared to the uncoupled one. A simple inter-
finite phase shift. This phase shift reduces with increasiné’retat'on that can be offered for the above observation is that

noise [34]. The results indicate that in the limit of small €ven when an oscillator misses the interstate switching, the

noise the phase shift is of the order of a quarter of the total®arby oscillators may not, thus forcing the individual oscil-

period, — /2 which is expectefiL6] for a two-state analysis lator to switch. This cooperative behavior should induce en-
that does not take in account intrawell fluctuations. hanced regularity in the switching of the oscillators and in-
crease SNR for a given oscillator. The simple interpretation

which can be true for any interstate switching mechanism
should also work for the systems we are studying.

Let us discuss cooperative phenomena possible in the spa- We define the following spatially extended system. We
tially extended versions of this system. The spatially dis-will follow an evolution scheme popularly known as a
cretized periodically forced time dependent Ginzburg-coupled map lattice. Let us consider a linear array of length
Landau equatiofi23], as well as a one-dimensional array of N. At each lattice point (i=1, ... N) we attach a variable
coupled bistable oscillatori1], have been studied before. x;(t) at timet. The time evolution ok;(t) is described by

VI. SR IN COUPLED MAP LATTICES
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FIG. 7. Best value of SNR as a function of coupliador maps defined by Eq$4), (5), (7), and(8) are shown ina), (b), (c), and(d).
It is clear that while for additive noise the best SNR is enhanced, it is not so for parametric noise.

€ case.(b) If the single system is perturbed with additive noise
Xi(t+1)=(1=eF (1) + S Fxi-2(0))+Fxi12()] the coupling between such systems always enhances the
(11) SNR, i.e., the best SNR for the coupled system is better than

the one for a single oscillator cade) If the single system is

for 2<i<N—-1 and perturbed by parametric noise, the coupling between such
systems does not enhance SNR much. In fact for a large
X1(t+1)=(1—€e)F(xq(1))+ eF(xx(1)), value of coupling, there is a clear decrease in SNR.

While observationga) and(b) are in tune with the studies
Xn(t+1)=(1—e)F(xn(1)+eF(xn-1(1)), (12 py Lindneret al.[21] in coupled bistable systems, the case
where F denotes some time evolving map. Of course Wewith parametric noise has not been studied before.
) . ; . Co ’ ' We feel that the reason for this qualitative difference is
will be interested, in particular, in single maps that show SRfoIIowing. When two systems with different parameters are

[e.g., Eq.(4)]. - - : , ,
, coupled, i.e., a system with a high Kramer’s rate is coupled
We have used the maps defined by B, (5), (7) and to one with a low Kramer’s rate, the Kramer's rate for the

(8) as a functionF in the above equation and have made a B~
detailed study of SNR at various values of couplingnd coupled system is like that of the slower systEB5]. For

noise intensinD for N=8. Following Lindneret al.[21] we higher coupling, this effect is more pronounced. Thus, in-

: . ; stead of an induced switching, one could have a slowed
have looked at the response of the middle oscillator. Flgureaown switching in the presence of coupling. In this context,
7@ ‘?nd flb) Show4the t&e;t \{aluetr?f ?NE as a fL.Jt?]Ct'gg.Of we would like to point out a rather curious outcome of our
coupling for maps_( ) an ), 1.€., the tanh map with addi- -, i erica investigation that the best SNR has the least value
tive and parametric noise while Fig9.cY and 7d) show the

! . ~arounde=2/3 in the case of parametric noise. This is the
same fpr maps defined by .E@ a_nd Eq_.(8), €., a C.haOt'C value at which all the maps in the neighborhood have equal
map with additive and multiplicative noise, respectively. WeWeight in Eq.(11) (1— e=e/2=1/3)
have the following observationga) In all these cases, the ' '

SNR of the middle oscillator as a function of noise for a

given value of coupling is nonmonotonic and shows a peak

at some optimal value as in the single map case. The optimal Due to the computational simplicity of the system defined
value of noise need not be the same as one for an uncoupledbove, and its ability to produce key features, the system

VIl. DISCUSSION
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defined above holds promise for carrying out work in variouslators and Ising-type systems has been pointed out before
directions with relative ease in the future. Here we would[39]. While studies of the Ising system itself will be useful in
like to point out that using a coupled map like formulation, analytic investigations, investigations in the coupled-map-
Oono and Puri have been able to getj@antitativeagree- type systems will be computationally more efficient. Studies
ment in the modeling phase ordering dynamics of Ising-typen globally coupled mapg24] and detection of noise induced
systemdg27]. Miller and Huse have also found that chaotic transitions in map$40] could be carried out in these sys-
coupled maps with Hamiltonian symmetry show a phasdems. The behavior of SNR as a function of couplingnd
transition with static and dynamic critical exponents consisnumber of mapdN could be studied further and these inves-
tent with the Ising clas§36]. On the other hand, the Ising tigations are in progress. One could also investigate SR in a
system has been reported to show SR in 1D and2038.  two-dimensional coupled map lattice since higher dimen-
As we have pointed out, recently there have been studies asional spatially extended systems are not investigated. One
coupled bistable oscillators in 1D which show §RL]. Al- more important question that needs to be addressed is the
though one does not expect all the detailed behavior in oneffect of multiplicative noise and disorder in SR in spatially
model to carry over to the other, all these things do pointextended systems.

towards a broader universality between coupled bistable os-

cillators, coupled maps, and Ising systems. The investiga- ACKNOWLEDGMENTS

tions on these lines should be useful in understanding SR in

spatially extended systems which are relatively unexplored The authors have enjoyed discussions with Professor N.
but clearly important from various points of view. Given the Kumar (RRI). R.R. would like to thank UGC for financial
wide variety of physical situations that the Ising model issupport and RRI for hospitality while H.S. would like to
able to simulate, this similarity should not come as a surthank the Indian Academy of Science for support for the visit
prise. In fact, the similarity between coupled bistable oscil-to INCASR where the work was carried out.

[1] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. 14, L453 [16] L. Gammatoniet al, Phys. Lett. A158 449(1991); L. Gam-

(1981); R. Benziet al, Tellus 34, 10 (1982. matoni and F. Marchesoni, Phys. Rev. L&, 874 (1993.

[2] K. Wiesenfeld and F. Moss, Natufeondon 373 33 (1995; [17] M. Dykmanet al. Phys. Rev. Lett70, 874(1993; P. Jung and
A. R. Bulsara and L. Gammatoni, Phys. Todd$(3), 39 P. Hanggi, Z. Phys. BA0, 255 (1993; M. Morillo and J.
(1996. Gomez-Ordmez, Phys. Rev. Let71, 9 (1993.

[3] See, for example, Proceedings of the NATO ARW Stochastid 18] M. C. Mahato and S. R. Shenoy, Phys. Rev.58 2503
Resonance in Physics and Biology, edited by F. Moss, A. Bul- (1994.

sara, and M. F. Shlesinggd. Stat. Phys70, 1 (1993]. [19] M. Rao, H. R. Krishnamurthy, and R. Pandit, Phys. Revi2B
[4] B. McNamara and K. Wiesenfeld, Phys. Rev. 39, 4854 856 (1990; J. Phys. Condens. Mattédr 9061 (199J).

(1988. [20] D. Dhar and P. B. Thomas, J. Phys.25, 4967(1992.
[5] S. Fauve and F. Heslot, Phys. L&G7A, 5 (1983. [21] J. F. Lindneret al,, Phys. Rev. Lett75, 3(1999; J. F. Lindner
[6] B. McNamara, K. Wiesenfeld, and R. Roy, Phys. Rev. Lett. et al, Phys. Rev. E53, 2081(1996); see also F. Marchesoni,

60, 2626(1988. L. Gammatoni, and A. R. Bulsara, Phys. Rev. L&#, 2609

[7] Recently nondynamical models of this phenomenon have been  (1996.
proposed. See Z. Gingl, L. B. Kiss, and F. Moss, Europhys[22] H. S. Wio, Phys. Rev. B4, R3075(1996.
Lett. 29, 191 (1999; L. Gammatoni, Phys. Rev. B2, 4691  [23] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. ¥8, 2239

(1999; J. J. Brey, J. Casadopascual, and B. Sandbét,52, (1985.
6071(1999: S. M. Bezrukov and I|. Vodyanoy, Natufeon- [24] P. Jung, U. Behn, E. Pantazelou, and F. Moss, Phys. Rev. A
don) 385 319(1997. 46, 1709(1992.

[8] There has been a study on SR in a monostable \®¢llThere  [25] M. Locher, G. A. Johnson, and E. R. Hunt, Phys. Rev. L&ft.
have also been studies on systems with excitable dynamics 4698(1996.
[10]. The two states of this system are a stable fixed point and26] See, e.g., J. P. Crutchfield and K. Kaneko,Directions in
an excited state. The other state is not a stationary state and the Chaos edited by Hao-Bai-lin(World Scientific, Singapore,
system returns back to the fixed point after a certain refractory ~ 1987).

period. [27] Y. Oono and S. Puri, Phys. Rev. LeB8, 836 (1987; Phys.
[9] N. G. Stockset al,, J. Phys. A26, L385 (1993. Rev. A 38, 434(1988; 38, 1542(1988.
[10] K. Wiesenfeldet al, Phys. Rev. Lett72, 2125(1994). [28] H. Chate and P. Mannevile, Physica32, 409 (1988.
[11] H. Risken, The Fokker-Planck EquatioiSpringer, Berlin, [29] D. Barkley, in Nonlinear Structures in Dynamical Systems
1984. edited by Lui Lam and H. C. MorrigSpringer-Verlag, New
[12] L. Gammatoniet al. Phys. Rev. E49, 4878(1994. York, 1990.
[13] D. S. Leonard and L. E. Reichl, Phys. Rev4§ 1734(1994). [30] We would like to point out that this map has been used to
[14] R. Graham and A. Schenzle, Phys. Rev2% 1731(1982. simulate time dependent Ginzburg-Landau equations

[15] L. Gammatoni, F. Marchesoni, and S. Santicci, Phys. Rev. (TDGL's) by Puri and Oong27].
Lett. 74, 1052(1995. [31] D. S. Leonard, Phys. Rev. A6, 6742(1992.



2526 PRASHANT M. GADE, RENUKA RAI, AND HARJINDER SINGH 56

[32] Hu Gang, G. Nicolis, and C. Nicolis, Phys. Rev.4®, 2030  [37] J. J. Brey and A. Pandos, Phys. Lett2A6, 240 (1996.

(1990. [38] Z. Neda, Phys. Rev. B1, 5315(1995.
[33] R. F. Fox, Phys. Rev. 89, 4148(1989. [39] L. Kiss et al,, J. Stat. Physz0, 451(1993; M. Inchiosa and A.
[34] It is difficult to get reliable statistics at lower noise intensities, R. Bulsara, Phys. Rev. B2, 327 (1995; P. Jung and G.
since there are fewer flips. Mayer-Kress, Phys. Rev. Leff4, 2130(1995.
[35] A. Neiman, Phys. Rev. B9, 3484(1994. [40] H. Gang, H. Haken, and X. Fagen, Phys. Rev. L&f.1925

[36] J. Miller and D. A. Huse, Phys. Rev. 48, 2528(1993. (1996.



